When teaching about electricity for the first time, it’s common for science teachers to tell students to visualize the flow of electrons in a circuit as the flow of water through plumbing. You might remember this from school: think of the battery’s voltage as a water pump’s pressure, the current through the wire as the width of the pipe, and resistance as a crimp in the pipe. Right?
That’s actually a very good way to learn the basics of direct current (DC) circuits, and the analogy holds – even though the math gets quite a bit more complicated when we talk about audio signals represented as electricity. Because waveforms move up and down, above and below zero, that results in back-and-forth movement of electrons in the wire… in other words, alternating current (AC) – and AC circuits follow different rules than DC circuits do.
Impedance is a representation of how “difficult” it is for electricity to move around in a circuit, or a part of it. It includes resistance, which is all we see in DC circuits (the crimp in the pipe, remember?). But that’s not all: there’s also reactance, which includes capacitance and inductance.
Capacitors (“caps”) are used everywhere in audio gear for all kinds of reasons. A cap allows AC (electrons moving back and forth) but doesn’t allow DC (electrons moving in one direction) because there’s no actual physical wire in it: just a pair of charged plates with a a gap between them. Signals are created because the plates “talk” to each other through an electric field they create in the gap.
In audio gear, an inductor is usually a coil of wire around a core of a carefully chosen material. Here, it’s the magnetic field created by electrons moving back and forth in the coil that we find useful. That’s why you’ll find coils in things like transformers, speakers, headphones – and the big one for today’s discussion: guitar pickups.